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AIDEme is a scalable interactive data exploration system for efficiently learning a user interest pattern over a large dataset

Motivation

• An increasing gap between fast growth of data and limited human ability
to comprehend data.

• A growing demand of data analytics tools that can bridge this gap and
help the user retrieve high-value content from data more effectively.

System Overview

• Consider the data content as a set of records, and the user is interested
in some of them but not all.

• In each iteration,

– the user labels a record as ”interesting” or ”not interesting”,

– a classification model is built,

– active learning techniques are employed to select a new record from
the unlabeled data source.

• Construct an increasingly-more-accurate model of the user interest.

• Upon convergence, the model is run through the entire data source to
retrieve all relevant records.

Key Techniques

• Challenge: Slow Convergence
•Novel techniques in AIDEme:

1.Factorization

–Factorized Version Space
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2.Formal results on convergence

–Theoretical results on the convergence of our proposed techniques.

–Detect convergence and terminate the exploration process.

3.Scaling to large datasets

–Subsampling procedures

–Provide provable results that guarantee the performance of the model
learned from the sample over the entire data source

4.Optimization using Class Distribution
–Subspatial convex property: the user in-

terest pattern projected onto a subspace of-
ten entails a convex object.

–When the subspatial convex property holds,
we introduce a Dual-Space Model (DSM).

DSM
predict←−−−−−−

sample next
Classifier + Polytope model.

Demonstration

•Demonstration
Setup =⇒ Iterative Exploration =⇒ Final retrieval =⇒ Comparison

•Comparison
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